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METHOD OF DESIGNING CASCADE BLADES WITH PRESCRIBED VELOCITY
DISTRIBUTIONS IN COMPRESSIBLE POTENTIAL FLOWS

By Georce R. CosTELLO

SUMMARY

By use of the assumption that the pressure-volume relation s
linear, a solution to the problem of designing a cascade for a
given turning and with a preseribed velocity distribution along
the blade in a potential flow of a compressible perfect fluid was
obtained by @ method of correspondence between potential flows
of compressible and incompressible fluids. The designing of an
isolated airfoil with a prescribed velocity distribution along the
airfoil is considered as a special ease of the cascade.

If the prescribed rvelocity distribution s not theoretically
attainable, the method provides a means of modifying the dis-
tribution so as fo obtain a physically significant blade shape.
Numerical examples are included.

INTRODUCTION

In order to control boundary-layer growth, transition, and
separation in the design of a cascade for a given turning, it is
advantageous to prescribe the velocity along the blade as s
function of the arc length along the blade and then to com-
pute the blade shape. For an incompressible fiuid, several
solutions to this problem have been obtained. (See refer-
ences 1 to 3.)

A similer solution for the two-dimensional potential flow of
a compressible perfect fluid was developed at the NACA
Lewis laboratory during 1948—49. This solution is based
on the assumption that the pressure-volume relation is
given by a linear approximation to the isentropic curve
instead of the true curve. The flow pattern of the com-
pressible fluid is obtained by a transformation from & cor-
responding flow of an incompressible fluid using the trans-
formation developed by Lin (reference 4).

The method of solution consists in using the free-stream
velocities upstream and downstream of the cascade and the
prescribed dimensionless velocity distribution along the
blade to select a suitable incompressible potential flow about
the unit circle and then to determine the mapping function
that transforms this incompressible flow into a compressible
flow about a cascade of airfoils. The image of the unit
circle under this mapping gives the cascade with the pre-
scribed velocity distribution along the blade, provided the

velocity distribution is theoretically attainable. If the
velocity distribution is unattainable, methods are given for
modifying the distribution so that a physically significant
profile is obtained.

The problem of designing an isolated airfoil with a pre-
seribed velocity distribution is comsidered as a special case
of the cascade. )

THEORY OF METHOD
CASCADE

In reference 4, Lin shows that if the pressure-density rela-
tion is (Symbols used in this report are defined in the
appendix.)

_G

P

p=C, (1)

then the compressible potential flow about 2 cascade of
blades can be obtained by trensforming the incompressible
flow about the unit cirele in the following manner: The com-
plex potential function F(¢) for the incompressible flow due

to two complex sources at {=a; and {=a; outside the unit
circle |¢|=11s

F(H)=A log, (r—a)+A 1og,( r——é—) +Blog, (f—a)+
Blog. (¢—5)+D @

where A and B are complex constants with Re A>0 and
Re A=—Re B, and D is an arbitrary complex constant.
The bar indicates the complex conjugate. The mapping
between the z-plane and the {-plane defined by

de=gO—a) G —ad™ di—5 [FQPION“(—a)—ad dt
®

gives a compressible flow with the linear pressure-volume
relation past a straight cascade of identical blades in the
z-plane with the velocity potential ¢, and stream function
Y. given by
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provided that g(¢) is chosen to satisfy the following re-
guirements:

{a) The function g(¢) is regular in closed region RN
defined by |¢| > 1.

(b) The function ¢(¢) ” O mR except pos51b1y at
one point on the circle where F/(¢}=0 (the order of
the zero not to exceéd 1).

(c) Along the circle |¢[=1 (ﬁ dz=0.

(d) The function g(¢) satisfies the inequality
I (ONg(O1 (¢ —ad(f —az}[<2 in R. J

The magnitude ¢ and the direction « of the dimensionless
velocity at any point in the z-plane are given by

2¢ g—ia_E’_G_)(f_—al)(;’—ai,) ©
1+41+¢* 6]

In order to use this trensformation in designing a blade
with a prescribed dimensionless velocity distribution along
the blade in a cascade, the prescribed conditions-are used to
select a suitable incompressible flow about the unit circle
and to determine the function g(¢).

The prescribed conditions are the velocity distribution on
the airfoil, the upstream velocity g;¢** and the downstream
velocity g,6'*2. The upstream and downstream velocities are

> (5)

related by the 1sentrop10-ﬂow equations with y=—1. This
relation is
q2* cos’a, gﬁ cos®a; 7
1+4¢s® 1+q.?

where the axis of the cascade has been taken along the y-axis

for convenience and the flow is from left to right. (See fig. 1.)
Yy
a a
i
oy 1 2 o2 _
€

F16¢URE 1.—Casecade in z-plane.

FLOW IN CIRCLE PLANE

The flow of an incompressible fluid about the unit cirele is
selected by determining the constants 4, B, a,, and &, in the
complex potential

F(§)=Alog, (§—a)+Alog, (12 )+

Blog, (¢—az)+B log, (:—%)w @
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from the given conditions. The constants A and B are
obtained from the upstream and downstream velocities and
the circulation and then @, and @, are determined by the
range of the potential on the airfoil.

Circulation and cascade spacing.—The magnitude of the
prescribed dimensionless velocity ¢ along the airfoil is given
as a function of the arc length [¢=g¢(s)] where the total arc
length is taken to be 2r and is measured from the trailing
edge along the lower surface. If @(s) is defined by

Q)=—q(s) 0<s<s, ®
QAs)=q(s) $2<8<27
where s, is the leading-edge stagnation point, then
§
s9=[ Q@ ds ©)
o= L " Q) ds (10)

The circulation and the spacing of the cascade are related
by

— rc

" ¢ sin o —

¢e Sin oy (1)

where d is the spacing. The quantities T';, ¢, ¢2, @, and

az are known so that the spacing is determined.
Determination of A.—The value of d from equation (11)

is used to evaluate A and B because the spacing is also
given by the absolute value of z taken along a path

around @, or @;. (See fig. 2.) The axis of the cascade has
been taken along the y-axis so that

id= dz=——56 dz (12)

7

T

laz

/ | ;
\ ‘ kj | "l
P

Unit circle

Equation

FIGURE 2.—Paths of infegration in {-plane.

The second equality comes from the fact that the residues
at infinity of

g —a) ' —ay™
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and
EFOP O —a) (§—a2)

in the expression for dz iIn equation (3) are zero and

consequently

36 dz+56 dz +4§ dz=0 (13)

4 51 a2
where ¢ is the unit circle. But by equation (5¢),
f£ dz=
so that
36 dz —_56 dz (14)
2

The evaluation of equation (12) in terms of the potential
F§)is

ides 9(¢) 95 [FOPG—a)—aj
i Sﬁal(r T—eG—a) 2 9(5) f
(15)
But .
.. A .3, B, B
CPO= Tt T (16)
@ $T%
so that equation (15) reduces to
PP glag 1 A2(a-1—a2)'9 .
id 27”((11—(12) 1 e 2wt 1n
o g(al) _L.f'lz (Gl—a;z)
=2 10 1 S Ced | 18
At ¢=a,, equation (6) becomes
2q; —ial_A(al—t‘Trz)
1++1+¢? g(ay) (19)
which on writing
K=
1++14g
reduces to
g(al) A 1¢1 9
(@1—a2) Kr.e (—O)

Substitution of the values from equation (20) in equea-
tion (18) gives .

’Ld——ZT?,l: = AKl)g“'l]

Hence, the bracketed expression in equa.tlon (21) must be
a real nu.mb er and

2D

4 A+ AR?E ey
ik = (22)
where
4K py A) (A=K 1'mA)2 23)
T ‘( iR, ik,
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From equation (22),

4t—KAHImA

@TEDReA 0@
or
ImA=—i+K‘; ReA tan o (24)
Ay
Imd=—+14¢;* Re A tan o (25)

which gives the relation between Re A and Im 4. .
Substitution of the value of Im 4 from equation (24) in
equation (23) yields

P2 4+Kl> Re "A+(4+KI) Re*d tan® o

4K, 4K,
— 4 Kl : 2 2 .
= 4K1 Be? A sec a
or
4 K T
= 4K‘Re:1isec au
Hence

.=27.-<4 TR b, A Isec a;[) (26)

Substitution of the value of d from equation (26) in
equation (11) gives

it Re Alsee al[)— T
1510 oy — @2 S o2
or
4KT, leos o
Re A= ocl i 27
¢ 27{4+ K;%(g; sin a;— g, sin op) @7

and Re A is now determined. By use of this value of Re A
in equation (25), Jm A is obtained. Hence 4 is completely
given by equeations (27) and (25).

Determination of B.—From equa.tion-(IQ)

fid=—§6 dz
L]

——, sOE—ay ey dr+

1
1§, POPIEIC—a)c—adds

glas) 1 B (as—a,) 27

id=—2mi 2_
id ™ (—a) T % glas)
Beiez 2w, .o
=—27% K 1 BER,ete
9 4B+ KJB) ]
- 41K,
where
‘)qz

K= 1+V1+Qz
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The bracketed expression must be real, so that

m —tan o ' (28}
But
ReB=—ReA . . (29)
and equation (28) can be written
I B=5LE Re A ton o
=y1F+giRedtana,  (30)

Consequently, B is determined by equations (29) and (30)
because Re 4 is known from equation (27),

Determination of ¢; and g,—After 4 and B are known,
the points @, and a, are to be selected to satisfy the single
condifion that the range of potential on the circle must equal
the range of potential on the airfoil, that s,

66(27) — Ge(8a)=F[e} @ +2m)] — F (%) B1

where 8, and 6, are the trailing-edge and leading-edge stag-
nation angles, respectively. This condition is ouly one
equation in two unknowns, @; and a;; consequently, the values
of a; and a, are not uniquely determined. By imposing an
additional restrietion that ¢, and @, are real and .

a=—a (32)

unique values are obtained for a; and a, in 2ll cases. In par-
ticular problems, however, some other restriction may be
more useful, such as assigning a definite value for ¢, and
computing a..

With the restriction given in equation (32), it is possible
to express 6, and 6, in terms of ¢; and substitute these values
in équation (31), but the resulting equation cannot be solved
explicitly for a,.

One method for obtaining a; is as follows: Let

a,=¢*
(33)

0‘;2=—6k

where £>0. Then equation (2) becomes

F(§)=A4 log. (¢ — )+ Z log,(r—e™)+B log, (r-+e)+
Blog, (f+¢+D

or, for points on the unit circle f=¢t -

F(e=(0)-+4(0)=Re A log, 23 Ejfj; 2+

ilm A log. T——-+zIm B log, io+ _L+D (34)

Hence, ¢(6) may be written in the form

REPORT 978—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

#@)=—2ReA tanh 250 4 (Im A+Im B) tan~t {00

tanh +
(Im A—ImB) t —1 Sln +HR€A tanh_l Ccos 0‘ _
cosh
_; tan 6, _ sin g,
(Im A+Im B) tan™* rog —Im A —Im B) tan™ ey
(35)

where D has been chosen to make ¢;(8,)=0 and the angle
convention is

T _, Sin @
2 <tan sinh Ic<

and tan™! ttii(;, is taken in the same quadrant and same

direction as 6.
The velocity on the circle »(6) is

(Im A+Im B) tank & sec? 0___
tanh? k-tan® ¢

2ReA éin § cosh k
v(0)= cosh? k—cos? # +

inh k cos 8
(Im A—Im B)S—————;;;H"s‘l’fm - —

2
~cosh 2k—cos 26
(Im A—Im B)cos §sinh k4 (Im A --Im B)sinh k cosh k]
B (36)
Equation (36) can be further simplified by defining A as
(Im A—Im B)sinh k

[2ReA sin 6 cosh k+

tan A= 2ReA cosh k 37)
._12"_.<)\< g
Then
: 2»\[4362.‘4 cosh? kF(Im A—Im B)’sinh? Ic[ _ ___—
2(6) cosh 2k—cos 28 sin § cos A+
. (Im A+Im B) sinh k cosh & e
¢ A
cos &in A+ v4Re*A cosh? k+(I'm A—Im B)? sinh?k
_4BeAcoshksec [ . (Im A4Im B) sinh lc:l
" cosh 2k—cos 2 4 [sm E+N+ 2ReAsec A
- (38)
The stagnation angles 6, and 8, are therefore the roots of the
equation _ .
sin (a_{_l):—-—(Im A+ Im B) sinh It (39)

9ReA sec

The desired value of k is obtained as follows:
(1) Assume a value of k.
(2) Compute A by equation (37).
(3) Obtain 6, and 6, from equation (39).
(4) Compute ¢:(8,+27)— d:(0,).
-(5) Repeat (1) to (4) several times to obtain a plot of
¢:(0,-+27)—¢;(6,) as a function of %.



CASCADE DESIGN PROCEDURE FOR PRESCRIBED BLADE VELOCITIES IN COMPRESSIBLE FLOWS 563

(6) Imterpolate to obtain £ such that
qbi(ez_i'-‘ ) qsi(an) ¢c(2 ") ‘Pc(s n)

With & determined, the flow about the circle is known.
The potential ¢,(6) and the velocity #(¢) for points on the
circle are given by equations (35) and (38), respectively.

FuncTiox g({)

The funection g(¢) can be computed for points on the unit
circle by using the prescribed velocity on the airfoil and the
velocity on the unit circle to determine the real part of g(¢).
The imaginary part of g(¢) can then be computed by Poisson’s
integral. Because of the restrictions imposed by the given
conditions, however, g(¢) is actually obtained in & slightly
different manner, as shown in the following sections.

Airfoil with pointed trailing edge.—If an airfoil with a
pointed trailing edge is desired, then g({) must vanish at the
trailing-edge stagnation point {==¢"t. Hence, g() can be
written in the form

e‘iﬂ, n
s=(1-5) o (40)
where f(¢) is regular in the exterior of the unit circle and
é
=1 —= (41)

where § is the included trailing-edge angle of the airfoil.
{See reference 4.} *

Values of g(+¢).—Because the velocities are given for the
compressible flow upstream and downstream of the cascade,
the value of g(¢) at {=2¢* is determined from equation (6),

N1 Can
g(e - K]_ (
42
(— = 2¢kBelas )
=g

In order that g(¢) have these values, f({) is written in the
form

fo=c@+E=E= D e ey
where
1/, & 2Agimtt 7
8¢y =3 (1 +—) log, m]-r
— 92 Bgieatk
> (1 )Iog, e (1_sz,—k)n:| (44)

and H(}) is regular in the exterior of the unit circle with
1;2 TH()=0 (45)
The restriction on H({) imposed by equation (45) is neces-

sary so that f(¢) (equation (43)) will be regular. By use of
equation (43), ¢g(f) is expressed as

" sary to compute H(t) for points on the circle.

eif\» C(I)—(—GLI%LE—%)HG')

g(s‘)—<1——— (4.6)
and g(¢) will be known when H(}) is determined. For the
actual computation of the blade shape, ouly the values of
g(t) on the unit circle are needed. Hence, it is only neces-
If desired,
the values of H(}) for any point in the exterior of the circle
can be obtained from the values on the circle by Poisson’s
integral.

Determination of Re H on circle.—By equation (4), the
potentials ¢.(s) and $:(6) are equal at corresponding points.
Thus, by matching these potentials a correspondence is
established between points along the airfoil are and the
circle angles; that is, s=s(6). By use of this correspondence,
the magnitude of the preseribed velocity along the airfoil

is obtained as a function of the circle angle g=¢(f). Hence,
by taking absolute values of equation (6),

20(6) [P —et)(e+e)| o

1+/1+g® l9(eD) 47

for points on the circle. Substitution of the value of g(¢)
from equation (46) with {=e? and replacing F’(e®) by the
velocity v(6) (equation (38)) on the circle give

_EQ(L)__
14414 (ﬂ)
¢*v(6)|(2 cosh 2k—2 cos 25)%

[2—2 cos (6,— G)I%eme C (¢ + (2 cosh 2k ~2 cos 26) Re H (¢i4)]

or, with the equation solved for Be H(e®),

1
| 10&{[;;(6)](2 cosh 2k —2 cos ia)-}_Re Cle)+i
- K(6)[2—2 cos (6,— )]
Re H(e™) 2 cosh 2k —2 cos 26
(48)
where
2¢(8)
KO)=—F"—

@ 1++/1+q(6)* “9)

Restrictions on Re H(¢*).—Equation (45) imposes restrie-
tions on the values of Re H(e*), as shown by writing H(¢)
in the form

H()= ho+ +§_2+ (50)

where hq, b1, ks, . . . are complex constants.
For points on the circle, equation (50) becomes
H(e*Y=Re H(e*)-+1 Im H(e™)
=Re "'°+,§1‘(Re h;cos j0+4+Im h;sin jo)+
% [Im ho-i—jZ:‘i(Im h; cos j6—Re h;sin 78] (51)
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Equation (51) is a Fourier expansion and

Re hf,=%r fo " Re H(e") do 52)
1 2

Re hy=1- ﬁ Be H(¢") cos 0.d6 (53)
§ o .

Im h1=; J; Re H(e') sin 8 dé (54)

But equation (45) requires that
Re ho=Im h0=Re h1=Im h'[=0 ’ (55)

Consequently, Be H(e*®) must satisfy the equations

L " Re H(e") d8=0 (56)
2r

j; Re H(e*) cos 6 d§=0 (57)
2

L Re H(e*) sin 9 40=0 58)

Adjustment of Re H(¢#).—If the values of Re H{e®) from
equation (48) do not satisfly equations (56), (57), and (58),
the values must be adjusted until the conditions are
satisfied. One method for adjusting the function is to
define Re H(e") by

Re H(e*y=Re H(¢*)—Re hy—Re hy cos 6—Im k,sin 8 (59)

where Re ko, Re ki, and Im h, are given by equations (52),
(53), and (54), respectively. The modified function Re H(¢*)
will then satisfy equations (56), (57}, and (68). This method
of modifying Re H(e*), however, changes the velocity distri-
bution all along the profile and, if the correction terms in
equation (59) are not small, these changes in the velocity may
be extensive because

27
1+ Y142

21 (Re hg+Re by cas 6+Im hysin 6) (2cosh 2k—2cos 20)

=

where 7 denotes the new velocity. In some cases, conse-
quently, Re H(e*) can best be adjusted to satisfy the require-
ments by adding to Re H(¢*) odd and even functions that
have nonzero values only in small neighborhoods of the points
=0 and §=—x. The particular functions to be added to
Re H(e*) and their range of values depend on the specific
problem; no general method can be given for determining the
functions.
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Determination of Im H{e®).—After Re H(e?) satisfying
equations (56), (57), and (58) is obtained, the funetion
Im H{e%) is given by Poisson’s integral (reference 5)

6

ImH(e“ — f Re Hie dr  (60)

where the constant term in Poisson’s integral has been taken
ag zero so that

1 L[ :
mho=2——ﬂ_ ] Im H(e!) do=0

as required by equation (55). Hence, H(e®) is determined

for points on the unit circle by
H{e*y=Re H{e®)+¢ Im H(e)

Adjustment of g(¢*’).—By use of these values of EH(e') in
equation (48), g({) is determined for points on the circle,

g(eia)z [1 —att —8)] n g [C(ei?)-+(2 cosh 26~2 cos 20) Fi(eif)] (6 1)

Because of the adjustments in H{e?), g(e*®) may no longer
satisfy condition (5d). If g(e®) does not satisfy the inequal-
ity for points on the circle, then the values of g(¢} can be
adjusted to satisfy the inequality by changing the second or
higher harmonic terms in H(¢) or by other methods. If the
prescribed conditions are theoretically attainable, however,
then no modification is necessary, not even in Re H(e*).

BLADE COORDINATES

By use of the values of g(¢®) that satisfy all conditions, the
blade coordinates are obtained from integration of cqua-
tion (3), that is,

2= [s© e~ s +erar—3 fﬁn%z—(gx;m

which, on replacing F/(¢*%) by v(a)e—i(a-!"z_) and writing

g(e*)=g.(0)ein®
reduces to

-1 v(f
o= oo = =] el
COMPUTATIONAL PROCEDURE FOR CASCADE (62)

- An outline of the procedure for computing the blade shape
is as follows:

(1) Obtain ¢.(s) and T. from equations (9) and (10),
respectively.

(2) Compute Re 4, Im A, and Im B by equations (27),
(25}, and (30), respectlvely

(8) Obtain £ as outlined in the text. Compute ¢:(6) and
»(6) by equations (35) and (38), respectively.

(4) Plot ¢.(s) and ¢,(6). By comparing the abscissas for
equal values of these potentials, obtain s as & function of 4,
which permits writing the prescribed velocity ¢ as a function

.of 8, g=q(0).
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(5) Compute Re H(e%) by equation (48) and determine
Re hy, Re ky, and Im bk, by equations (52), (53), and (54),
respectively. If these values are not zero, then adjust
Re H(e®) either by equation (59) or by addition of functions
so that Re H(e") satisfies equations (56), (57), and (58).

(6) Obtain Im H(e") by equation (60), using the adjusted
values of Re H(e¥).

(7) Obtain g(e®) by equation (61). The function g{e®)
must satisfy inequality (5d) for points on the circle. If
g(e®) does not satisfy the inequality, adjust g(e®) as sug-
gested. -

(8) After g(e*) has been adjusted to satisfy all conditions,
the blade shape is obtained by integrating equation (62).

ISOLATED AIRFOIL

The problem of designing an isolated airfoil with a pre-
seribed velocity distribution along the airfoil in a com-
pressible potential flow with a given free-stream velocity can
be considered as a degenerate case of the foregoing cascade
problem in which the upstream and downstream velocities
are equal and the spacing of the cascade becomes infinite.
In this case, the singular points {=q, and {=a; move to
infinity and the complex potential F(¢) for the incompressible
flow about the unit circle (equation (2)) becomes

FQ)=—V(t+3)+550g ¢+D (63)

where V is the incompressible free-stream veloeity and is in
the direction of the negative £-axis. The mapping function
(equation (3)) becomes (reference 6)

de=g(t) At —3 TP OGO df (69)

where g({) satisfies the following requirements:

(a) The function g({) is regular in the closed region
R defined by [¢]21.

(o) The function g({)=0 in R, except possibly at
one point on the circle where F/(f)=0 (the order of
the zero not to exceed 1).

(¢} Along the circle |¢{=1, SB dz=0.

=

(d) The function g({) satisfies the inequality
IO g]~1<2in B J

The velocity potential ¢, and the stream function ¢, in
the z-plane are given by

$et1Ye=F ()

The magnitude ¢ and the direction « of the dimensionless
velocity in the z-plane are given by

(66)

29
1++1+ ¢’

o Q) i
=56) 67)
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In order to use the preceding transformation, the prescribed
velocity distribution along the airfoil g=¢(s) and the free-
stream velocity g,¢'™* are used to select the flow about the
unit circle and to determine the function g(¢)}. For the actual
computation of the airfoil, only the values of the functions
for points on the unit cirele are needed.

FLOW IN CIRCLE PLANE

For points on the cirele {=e®, the complex potential .
(equation (63)) reduces to '

¢:(6)=—2V (cos 6—cos 0,)—{—?1:—; (6—8.) (68)

when D is so chosen that ¢;=0 at the trailing-edge stagnation
point {=¢"* (fig. 3). The veloeity is
o()=—ie— <2V sin 9+5* (69)

Both ¢:(6) and v(f) are completely determined when T, V,
and @; are known. These quantities are obtained from the

I

. \
'

g

.
Freif:
Trailing-edge ;
stagnation point g,

FicTrE 3,—Variables in circle plane.

prescribed velocity distribution by determining ¢.(s,) and T,
from equations (9) and (10), respectively. By equation (66),
the potentials are equal at corresponding points so that

¢i, min=¢c,min=¢c(sn)
(70)
T';=T.
Then 6, is given by (reference 2)
cotd, + o,=—F—Tume_ % )
and ¥ is given by
— Pi —_— rc o
V— 4ﬁ' Sin. 6;_ 4:11' Siﬂ 6; (7-‘)
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The flow about the circle is obtained by using these values of
Ty, V, and 6, in equations (68) and (69).

FUNCTION g(¢)

As in the cascade cése, if an airfoil with a pointed tail is
desired, g(g') must vanish at the ’orallmg-edge stagnation
point {=¢'*. Hence, g(¢) can be written in the form

LAY
=(1-) o 73)
where f(¢) is regular in the exterior of the unit circle and
8
?’b=1—'7—'r (41)

By using the prescribed velocity distribution on the airfoil
and the circle velocity, the real part of f(¢) can be computed
for points on the circle and the imaginary part of f(¢) can
then be obtained by Poisson’s integral. Hence g(¢) would
be determined. Because of the restrictions on f({), this
computational procedure is modified as shown in the next
sections.

Restrictions on f({).—Because the free-stream velocity is
given for the compressible flow, the value of g(¢) at infinity
is determined by equation (67)

[

. Veilertm
lim g(t)=—%— NN L)
where
K=—20
1+41+g
By writing

S
f(g‘)—bo+§+£_z+ « e« e

where by, b;, bs, . . . are complex constants, then
lim g(¢)=e
and o
Re (bo)=log,% '
! (75)
Im (b))=a-Fn

Hence, the desired free-stream velocity will be obtained if
b, satisfies equation (75).

Further restrictions are imposed on f(¢) by the requirement
$o®) dr—1 P FOMLET T =0 (70)

When the residues of these functions at infinity are con-
sidered, this requirement can be expressed in g more useful
form: The function ¢g(¢) may be written as

g(t)=eb I:l+ +terms in {,: _7>2]
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and then
¢ 96) de=2ietob,—ne) (77)
From the incompressible flow about the circle,
7
) =—V+ 2Vi sm 0‘_[_;2
and
27 @i — 2,10 72
F@Tg ()t memto (Ve VL S A n VR b b2
terms in é) iz 2)
therefore

ﬁ [F(OPg(O] e =—2m1e~b(4 V2 sin 8, —nV 2%+ b, V?)
(78)

Then, by use of equations (77) and (78), equation (76)
becomes

2ighn (by— )+ 2mie=00V? (44 sin O,—neii-tb)=0
or
. VR,
2rie~t [o2 Bebo (b —ne'®) —— - (—4i sin 8, —ne~10: LB =0
(79)

Equating the real parts of equation (79) gives

(gﬂRﬂbn—Y‘;-) (Re by—n cos 6)=0

V2
But e2Rebo—— cannot be zero except for zero free-siream
4

velocity, hence
Re bL=

7 cos 6, (80)
The imaginary parts of equation (79) give

e?Beto (Im b,—n sin 6,)-!— (Im bi—n sin 8;)-+V? sin 6,=0

or
-
Im by=nsin 0,—2&6{,2
62 Rebn+_
4
But from equation (75)
‘72
62 Re bo=_‘K_12
hence
2
Im b,=sin 6, (n—ﬁFKI—I{?) (81)
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Consequently, equation (76) will be satisfied if Re b, and Im b,
- satisfy equations (80) and (81), respectively.

For convenience in computation, these restrictions on the
values b, and 5, are transformed into restrictions on the
values of Re f(¢®). For points on the circle,

Fe=Ref(e)+ilm fle)=bot- -5t .
=Rebo+§(Re b; cos 78--Fm b, sin 78)+

-i[Im bo+ 3 (Tm b, cos 6—Re b, sin ja)] 82)
a

Equation’ (82) is & Fourier expansion and

1 8 +2x .
Reby=oe L Ref(e)do 83)
1 [9et2r
Reb,=1 fa Ref(e™) cos 6 d6 (84)
1 4, +2x .
Imb=1t ﬂ Ref(e*) sin 0do (85)

Substitution of these values of Re by, Re b,, and Im b, in equa-
tions (75), (80), and (81), respectively, gives

1 [oere 14

37 Je, Re f(e'®) do= log,K (86)
1 0 i2x
g j; Re f(e*) cos 6 d8=mn cos §; (87)
] ot . B 4K
=), Ref(e') sin 6 df=sin 4, (—n—‘l—m) (88)

Hence, Re f(e®) must satisfy equations (86) to (88).

Determination of Re f(¢*).—By matching the potentials
o.(s) and ¢.(6), a correspondence is established between
points on the airfoil and the eircle angles. The prescribed
velocity distribution along the airfoil can therefore be written
as a function of the ecircle angle g=¢(f). When absolute
values of equation (67) are taken,

2¢(6) LF"(e*)]
1++/1F¢%0 19E)]

for points on the circle. By replacing F”(¢*) by the velocity
2(8) (equation (69)) and substituting ¢g(¢) from equation (73)
with {=e%, equation (89) becomes

(89)

. T
7 [
2q(6) |2Tf sin 0 27

1++1+4%9) [2—2 cos (ot_H)I%eRef(a“)

or, with the equation solved for Re f(e®),

2V sin 0—[—%

Ref(e*®)=log, (90)

n

[2—2 cos (8, — O2ZK(H)

956646—51——37
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where
+V1+4%0)

The values of Re f(e®), as given by equation (90), musé
satisfy equations (86) to (88). If these equations are not
satisfied, the values of Ref(¢®®) must be adjusted until the
equations are satisfied. One method for adjusting the
function is to define

Re)?(e"")=Re f(e"“)—(Re b0~log,£)—(Re b;—ncos8,) cos §—

I:I-m b,—sin 6,( 4_{_K2):|sm ] 91)

where Re by, Re b;, and Im b, are given by equations (83),
(84), and (85), respectively. The function Re f(e“‘) will
satisfy equations (86) to (88). If the corrections are large,
this method may result in large changes in the velocity
In general, the method wused for adjusting Re f(e“)
depend on the specific problem.

Determination of Im f(e®).—VWhen Re f(¢') satisfying equa-
tions (86) to (88) is obtained, Im f(e®) is computed by
Poisson’s integral

) 1 [t : T—8
Im Fe) = f Ref(e®) cot “ldr+(atn) (92)
2x Je, 2
where the constant term in the integral has been taken
equal to ey, so that
1

fy+2x
Y

as required by equation (75). Hence f(e*) is now known

for points on the cirele:
Fe®)= Re f(e'®)+1 I'm f(e?)

Determination of g(e®).—By use of these values of f(¢%)
in equation (73), g(¢) is determined for points on the circle:
g6 =[1 —e1C-0]ngf e (93)

Because of the changes made in Re f(e®) to satisfy equations

- (86) to (88), g(¢*) may no longer satisfly condition (65d).

If g(e®) does not satisfy the inequality, g{¢) can be adjusted
by changing the second or higher harmonic terms in f(¢%),
or by some similar method.

AIRFOIL COORDINATES

The function g(¢) has been obtained to satisfy all require-
ments; hence, the airfoil coordinates in the z-plane are given
by equation (64) on integrating around the unit circle. For
convenience, let g(e®) be written as

g(e”) = gl(a)eiﬂz(a)
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From equation (64) the airfoil coordinates are then

e[
-

COMPUTATIONAL PROCEDURE FOR ISOLATED AIRFOIL

<2Vsm 6+2T

sin (g.+ O d8  (94)

2
—<2V sin e_ﬂ)

cos (gs+6) &6 (95)

An outline of the procedure for computing the airfeil
follows:

1. Obtain ¢.(s), T', and ¢,(s,) from equations (9) and (10).
By use of these values in equations (71} and (72}, obtain
8, and V, respectively. Then calculate ¢;(f) and #(6) from
equations (68) and (69), respectively.

2. Plot ¢.(s) and ¢,(6). By comparing equal values of
these potentials, obtain s as a function of 8, which permits
writing the prescribed velocity ¢ as a function of 8, g=¢(6).

3. Compute Re f(¢¥®) by equation (90); this funetion must
satisfy equations (86) to (88). If these equations are not
satisfied, Re f(e®) is adjusted to satisfy them as suggested by
equation (91) or by similar methods.

4, Obtain Im f(e®) from equation (92) and compute
gle® by equation (93). These values of g(¢*) should be
checked in inequality (65d).
inequality, it is further medified as previously suggested.

5. By ‘use in equations (94) and (95) of the values of
g(e®) that satisfy all requlrements, the airfoil coordinates are
obtained by integration.

ILLUSTRATIVE EXAMPLES

Isolated airfoil.—For this example, the prescribed velocity
g=¢(s) was obtained from the incompressible velocity dis-
tribution shout & symmetrical Joukowski profile, as com-
puted by Lipman Bers at Syracuse University in the form
of the ratio of actual velocity to free-stream velocity, by
taking the dimensionless free-stream velocity to be 0.538.
The resulting distribution is shown in figure 4 with the final
velocity after adjusting Re f(¢®). The computed profile
(fg. 5) is slightly thicker than the Joukowski profile toward
the nose and has some reflex camber. The peaks in the
velocity distribution about the computed profile are lower
then those that would occur in a compressible flow about the

~
O

o Prescribed velocity
— Final velerty . .

o

Dimensionless
vebeily, q

g P en
Arc length, s

F1oURE 4~—Comparison of prescribed velocity and final velocity distributions for airfoil.

If g(e*) does not satisfy the
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Joukowski profile with the same free-stream velocity and
angle of attack because: (1) the circulation was kept the
same as for the incompressible flow, which resulted in the

" reflex camber; and (2) the thickening of the profile reduced

the curvatures in the vicinity of the velocity peaks.

o Joukowsk/! Profife
—— Computed Profile

FIGURE 5.—Comparison of computed profile and Joukowski profile.

Cascade.—For this example, it was decided to design a
cascade of blades having cusped tails and a velocity distri-
ybution along the blade like the distribution in the foregoing
isolated-airfoil example. The frec-stream conditions ¢, «y,
and op were arbitrarily taken as

n=0.576

a=10°

az=0°
which gives

g2=ﬁ.5 64

Adjustments to ReH(e?) to satisfy equations (86) to (88)
modified the prescribed velocity somewhat and the final
velocity is shown in figure 6. Figure 7 is the computed
cascade.

o LOR
o
83
0g AF
58
ko
q* i !
g
x 2x
Arc length, s
FiGurE 6.—~Velocity distribution on caseade blade.
gi=0576
/0° g:=0.564

T16URE 7. Two blades of computed cascade.
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CONCLUDING REMARKS

The magnitude of the dimensionless velocity along the
blade cannot be entirely preseribed arbitrarily as a function
of the arc [ength, but is subject to some restrictions in addi-
tion to the conditions imposed on the regular functions H({)
and f(¢). The magnitude must be finite everywhere along
the profile and, by the method given, the velocity can be
zero in, at most, two places—the leading-edge and the
trailing-edge stagnation points. By & limiting process,
however, the method can be extended to provide for addi-
tional stagnation points. The order of the zero of the dimen-
sionless velocity at the trailing edge is determined by the
included trailing-edge angle of the blade. Thus, for a cusp
at the tail, the angle is zero and the dimensionless velocity
need not be zero at the trailing edge.

If a velocity distribution is selected to satisfy these con-
ditions, but otherwise is arbitrary, the resulting profile may
not be a physically real blade but may result in a blade with
zero or negative thickness in some portions of the blade.
The zero or negative thickness is caused by specifying too-low
velocities along parts of the blade; a physically real blade
can be obtained by increasing the prescribed velocity along
the blade.

NATIONAL ADVIsSORY COMMITTEE FOR AERONATUTICS,
Lewis FricaT Propursion LABORATORY,
CreEvELAND, OnIO, October 1, 1949.

APPENDIX
SYMBOLS o angle of velocity in compressible flow (meas-
. . s . ured from positive z-axis)
ghe ch)}lo;mg symbols are useid in this report: r circulation
A,B,C, Gy fomf’_lex c?nstan{.-b - Y ratio of specific heats -
a,dsy, - - . ocation of complex sources in ¢-plane P included trailing-edge angle of blade
g(f ) function ‘Ef ¢ def(ilned by equation (44) §=&+1in complex variable (incompressible-flow plane)
. spaculxg ° casca_el tuneti . <ibl g circle angle (incompressible-flow plane)
® cofrlnp ‘]ex potential function (incompressible | ) auxiliary variable defined by equation (37)
ow .
) . P density
5@ regular function of ¢ T variable of integration
g regular function of ¢ - :
& . . P ¢ velocity potential
©), regular function of ¢ . 1 stream function
Re H(}) function of ¢ defined by equation (59) Subseripts:
Im imaginary part ¢ compressible flow
K function of ¢ defined by equation (49) 1 incompressible flow
2 n leading edge
Y constant equal to — 9L cing
K, 4 1+1+¢? t trailing edge
B tant 1t _2¢, Prime indicates & derivative.
s constant equal to 7 Fitos _
k constant defined by equations (33) REFERENCES
n number determined by included trailing-edge
angle of blade 1. M;tterperl, Wiﬂia;nr T A Soluticon of the Direct 2nd Inverse Potential
roblems for bitrary Casecades of Airfoils. NACA ARR
Z(s) Eflisish};re function of ¢ LAE22b, 1944.
: 'o . tI'Y d ' £ . ionl Tocit . 2. Goldstein, Arthur W., and Jerison, Meyer: Isolated and Cascade
q magnituae o dimensionless _Velocatly m Airfoils with Prescribed Velocity Distribution. NACA Rep. 869,
comp'res&ble-ﬂow .pIane (r_atlo of actual 1947.
) . velocity to stagnsa:t-lon velocity of sound) 3. Weinig, F.: Die Stromung um die Schaufelu von Turbomaschinen.
g1t dimensionless velocity upstream of cascade Johann Ambrosius Barth (Leipzig), 1935, S. 125-140.
gqetee dimensionless velocity downstream of caseade | 4. Lin, C. C.: On the Subsonic Flow through Circular and Straight
R region in {-plane defined by [¢{>1 Lattices of Airfoils, Jour. Math. and Phys., vol. XXXVIII,
Re real part po. 2, July 1949, pp. 117-130.
,. number defned by equation. (23 5 Taeodorse, T, and Carri, I . General Ptentl Theory of
& arc length along blade . o S8R JEP. 205 Do
- s g . _ 6. Lin, C. C.: On an Extension of the von Kdrmén-Tsien Method to
' . free-s.tr eam ve%ouj:g (mf:omp reSSJ‘b!e flow) Two-Dimensional Subsonie Flows with Circulation around Closed
z16} . velocity on lf-mt circle (mCOD.QPI‘eSSIble flow) Profiles. Quarterly Appl. Math.,, vol. IV, no. 8, Oct. 1946,
c=zx+1y complex variable (compressible-flow plane) pp. 201-297.



